
Journal of Statistical Physics, Vol. 8, No. 4, 1973 

Velocity Autocorrelation Function 
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The thermal motion of a long-chain molecule dispersed in a solvent is 
examined in terms of the velocity autocorrelation, in a reference frame 
attached to a subunit of the chain. 

KEY W O R D S "  Polymers; Brownian motion; velocity autocorrelation; 
short-range interactions; quasielastic broadening for incoherent neutron 
scattering. 

The velocity autocorrelat ion function has proved to be an appropria te  
representation in the study of  liquid dynamics/ i )  I t  reflects the dynamic  
behavior  both  in the collision and collisionless regime. I t  is directly related 
to such observables as the incoherent  neutron scattering law (g) 

cozSine(q, co) 2 [ ~  
lim.~0 q2 --  ~r- 2o cos oJt(v(O) v(t)> dt (1) 

In  an earlier paper  Jannink and Saint-James (3) used the Rouse model  to 
calculate the mean square displacement function (MSD) for the slow mot ion  
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of long-chain molecules in solution. In this model the random forces which 
act upon the subunits are not correlated. Motion of simple liquids tl) is, 
however, interpreted in terms of a strong correlation of the random forces. 
Polar diatomic molecules also show preferential orientations in the rotation 
motion. (4) We examine here the effect of random force correlation on the 
velocity autocorrelation for long-chain molecules and discuss the value of 
the parameters for certain types of solvent-solute systems. 

As in Ref. 3, a system of coupled Langevin equations will be taken as 
interpolation model C5) for the motion of the solute molecules 

t 
/L' -? s y(t -- t') O~(t') dt' -? co 2q~ = F(t), 

o 

j , -  1 ..... N (2) 

In this equation, written in normal coordinates, qj is the normal displacement 
of  mode j. The frequency distribution is 

2a  (1 - -  cos 27rj 
co~ = m N / '  j -~ 1 ..... N (2') 

where a -=- 3kBT/I 2 is the force constant. There are N statistical subunits, 
of mass m and mean square length 12 per chain The time-dependent damping 
factor y(t) is directly related to the random force autocorrelation: 

fo fo kBT e - ~ y ( t  ) dt = (l/m) e-i~ F(t)> dt (3) 

When y(t) reduces to y08(t) the model is equivalent to the Rouse treatment. 
We shall study the function 

1 ~  ~ S~(p,a  0 z(co) = ~ z~(co) = lim co 2 ~=, o~o v=l q2 (4) 

where S~(p, co) is the scattering law of the pth subunit in a reference frame 
attached to the first subunit. The function z~(co) is related to the velocity 
autocorrelation spectrum f~(co): 

f0  a~ 
z~(co) ----- <v2>f~(co) = Re lim (2/7r) eat<v~(O) v~(t)> dt 

a~ s 
(sa) 

and to the mean square displacement: 

f5 zv(co) = --(eoz/27r) Re d~ -- X~(0)) 2) dt 
co 

(5b) 
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where X~ is the displacement of the pth subunit in the above-mentioned 
reference frame. Expression (5b) was calculated in Ref. 3 as 

_6o2 8l ~ sinh(p/3/2) sinh[(N -- p)/3/2] 
z~(6o)-- mli Re (6) 

a-,,o, 27r 3 k sinh/3 sinh(N/3/2) 

where 

( m  l m A[A + y(A)]I) x;~ (7) sinh/3 = A[h + y(A)] 1 q- 

In this equation y(A) is the Laplace transform of 7(t). For the Rouse model 
7(A) = 7o and in the limit N--~ m one has the following result: 

lim z~(o)) = --  6o2 8l 2 cos 39 
P-*~ 2"D" 3 O)1/2(O92 ~- ~-t02)I/4[((t)2/2 -~- 702) ̀ ;' -~- 7026O2] 1/4 (8) 

where 

113~r + t a n q  ~__ § tan_ ~ 
= 2 t 2  7o 

20.1 
7 o  + (Yo 2 - -  c~ 1/2 • tan-1 

YO ~ 26oN/2 

26o 1 
7 0  - -  (702 - -  6o~)1-~] 

Returning to the finite case, addition of the signal over all subunits yields the 
simplified expression 

6o2 8l 2 lim Re coth(Nfi/2) -- (l/N)coth(/3/2) (9a) 
z(w) -- 2rr 3 a-~i~ 2~ sinh/3 

I n  the limit N --+ oo 

6o2 812 1 
- -  lim Re ( 9 b )  z(6o) 2~r 3 a-~io) 22~ sinh/3 

Using reduced variables y = 6o/6oN/2, c = 7o6o~/2, where CON/2 is given by 
(2'), we finally have 

12wN I y ~1/2 
z (y )  = ~ lm ( y - -  i c ) [ y ( y - -  i c ) - -  1] t (10) 

The effect of parameter c is seen in Fig. 1, where the function H ( y )  = 
(3rr/126o;v/2) z ( y )  is plotted against y for several values of c. The motion is 
overdamped for c > 2, which is the case of interest. A maximum appears 
at y ---- 1. The 71/2 behavior in the interval (0, l) reflects the square root time 
dependence of the MSD. (6) We now introduce the random force correlation 
and assume a time dependence of the form 

7(0 = t~roe-"' (1 la) 
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F i g .  1. R e d u c e d  v e l o c i t y  a u t o c o r r e l a t i o n  

spectrum H(y) = ( 3 r r / l e ~ o N I 2 ) z ( w )  for several 
values of the damping e ~ yo/OJNl2 [Eq. (I0)]. 
The value c = 2 is the lower limit for the 
overdamped motion. 

This yields 

~(A) = ~y0/(A + ~) 

In reduced variables one has 

(1 Ib) 

Yo/~ R - l =  
c (y )  = 1 -~ iyR ' tONi 2 

The parameter  c is now replaced by c(y) in Eq. (10). The function H(y)  for 
~,0/~ou/z = 5 and several values of  R is shown in Fig. 2. The time dependence 
in the damping produces a second resonance at y > 1. Such a pattern is also 
found in the interpretation of the velocity autocorrelation in simple liquids.(6) 
We notice that  maximum shifts toward y = 1 as R increases. The " m e m o r y "  
parameter  R will then modify the velocity autocorrelation function in the 
interval (0, 1). The latter was seen to reflect the diffusive conformational 
motions. A finite values of  R tends to decrease the characteristic frequencies 
of  this motion in the vicinity y = 1. Our interpolation model is of course 
questionable beyond y = 1. In this region many degrees of  freedom will 
contribute to the velocity autocorrelation, for which Eq. (10) may be repre- 
sentative. We single out the solvent-solute interaction due to the dipole 
distribution along the chain. The reorientation of the dipole is known to 
depend strongly on the type of (nonpolar) solvent. (4) Also the dipole moment  
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FIG. 2. Reduced velocity autocorrelation 
spectrum H(y) (as in Fig. 1) for several values 
of the random force correlation constant R. 
The damping "intensity" corresponds to 
e = 5 inF ig .  1. 

per repeat uni t  can be easily control led in such polymers as polyesters. It  

would therefore be possible to determine experimental ly the velocity auto- 

correlat ion (from a neu t ron  inelastic scattering experiment) for several 

solvent-solute  systems and to interpret  the variat ions of the parameter  R 

in terms of  solute dipole m o m e n t  and  electric field induced by the solvent. 
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